Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
NPJ Vaccines ; 9(1): 60, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480758

RESUMO

African Swine Fever (ASF) is a highly lethal viral disease in swine, with mortality rates approaching 100%. The disease has spread to many swine-producing countries, leading to significant economic losses and adversely impacting global food security. Extensive efforts have been directed toward developing effective ASF vaccines. Among the vaccinology approaches tested to date, live-attenuated virus (LAV) vaccines produced by rational deleting virulence genes from virulent African Swine Fever Virus (ASFV) strains have demonstrated promising safety and efficacy in experimental and field conditions. Many gene-deleted LAV vaccine candidates have been generated in recent years. The virulence genes targeted for deletion from the genome of virulent ASFV strains can be categorized into four groups: Genes implicated in viral genome replication and transcription, genes from the multigene family located at both 5' and 3' termini, genes participating in mediating hemadsorption and putative cellular attachment factors, and novel genes with no known functions. Some promising LAV vaccine candidates are generated by deleting a single viral virulence gene, whereas others are generated by simultaneously deleting multiple genes. This article summarizes the recent progress in developing and characterizing gene-deleted LAV vaccine candidates.

2.
Virus Res ; 343: 199342, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408646

RESUMO

African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-ß promoter activities, impeding the function of both IRF3 and NF-κB transcription factors. As a result, I73R obstructed IRF3 nuclear translocation following the treatment of cells with poly(dA:dT), a strong inducer of the cGAS-STING signaling pathway. Although the I73R protein exhibits structural homology with the Zα domain binding to the left-handed helical form of DNA known as Z-DNA, its ability to suppress cGAS-STING induction of IFN-ß was independent of Z-DNA binding activity. Instead, the α3 and ß1 domains of I73R played a significant role in suppressing cGAS-STING induction of IFN-ß. These findings offer insights into the protein's functions and support its role as a virulence factor.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , DNA Forma Z , Interferon Tipo I , Animais , Suínos , Vírus da Febre Suína Africana/genética , Interferon beta/genética , Interferon beta/metabolismo , Transdução de Sinais/genética , Imunidade Inata/genética , DNA Forma Z/metabolismo , Proteínas de Membrana/metabolismo , Interferon Tipo I/metabolismo , Nucleotidiltransferases/genética
3.
Vaccines (Basel) ; 11(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38140210

RESUMO

Pichinde virus (PICV) can infect several animal species and has been developed as a safe and effective vaccine vector. Our previous study showed that pigs vaccinated with a recombinant PICV-vectored vaccine expressing the hemagglutinin (HA) gene of an H3N2 influenza A virus of swine (IAV-S) developed virus-neutralizing antibodies and were protected against infection by the homologous H3N2 strain. The objective of the current study was to evaluate the immunogenicity and protective efficacy of a trivalent PICV-vectored vaccine expressing HA antigens from the three co-circulating IAV-S subtypes: H1N1, H1N2, and H3N2. Pigs immunized with the trivalent PICV vaccine developed virus-neutralizing (VN) and hemagglutination inhibition (HI) antibodies against all three matching IAV-S. Following challenge infection with the H1N1 strain, five of the six pigs vaccinated with the trivalent vaccine had no evidence of IAV-S RNA genomes in nasal swabs and bronchoalveolar lavage fluid, while all non-vaccinated control pigs showed high number of copies of IAV-S genomic RNA in these two types of samples. Overall, our results demonstrate that the trivalent PICV-vectored vaccine elicits antibody responses against the three targeted IAV-S strains and provides protection against homologous virus challenges in pigs. Therefore, PICV exhibits the potential to be explored as a viral vector for delivering multiple vaccine antigens in swine.

4.
Vaccines (Basel) ; 11(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38006019

RESUMO

African swine fever virus (ASFV) is circulating in many swine-producing countries, causing significant economic losses. It is observed that pigs experimentally vaccinated with a live-attenuated virus (LAV) but not a killed virus (KV) vaccine develop solid homologous protective immunity. The objective of this study was to comparatively analyze antibody profiles between pigs vaccinated with an LAV vaccine and those vaccinated with a KV vaccine to identify potential markers of vaccine-induced protection. Thirty ASFV seronegative pigs were divided into three groups: Group 1 received a single dose of an experimental LAV, Group 2 received two doses of an experimental KV vaccine, and Group 3 was kept as a non-vaccinated (NV) control. At 42 days post-vaccination, all pigs were challenged with the parental virulent ASFV strain and monitored for 21 days. All pigs vaccinated with the LAV vaccine survived the challenge. In contrast, eight pigs from the KV group and seven pigs from the NV group died within 14 days post-challenge. Serum samples collected on 41 days post-vaccination were analyzed for their reactivity against a panel of 29 viral structural proteins. The sera of pigs from the LAV group exhibited a strong antibody reactivity against various viral structural proteins, while the sera of pigs in the KV group only displayed weak antibody reactivity against the inner envelope (p32, p54, p12). There was a negative correlation between the intensity of antibody reactivity against five ASFV antigens, namely p12, p14, p15, p32, and pD205R, and the viral DNA titers in the blood of animals after the challenge infection. Thus, antibody reactivities against these five antigens warrant further evaluation as potential indicators of vaccine-induced protection.

5.
Vaccines (Basel) ; 11(10)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37896997

RESUMO

The Influenza A virus of swine (IAV-S) is highly prevalent and causes significant economic losses to swine producers. Due to the highly variable and rapidly evolving nature of the virus, it is critical to develop a safe and versatile vaccine platform that allows for frequent updates of the vaccine immunogens to cope with the emergence of new viral strains. The main objective of this study was to assess the feasibility of using lipid nanoparticles (LNPs) as nanocarriers for delivering DNA plasmid encoding the viral hemagglutinin (HA) gene in pigs. The intramuscular administration of a single dose of the LNP-DNA vaccines resulted in robust systemic and mucosal responses in pigs. Importantly, the vaccinated pigs were fully protected against challenge infection with the homologous IAV-S strain, with only 1 out of 12 vaccinated pigs shedding a low amount of viral genomic RNA in its nasal cavity. No gross or microscopic lesions were observed in the lungs of the vaccinated pigs at necropsy. Thus, the LNP-DNA vaccines are highly effective in protecting pigs against the homologous IAV-S strain and can serve as a promising platform for the rapid development of IAV-S vaccines.

6.
Viruses ; 14(12)2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36560826

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) has a restricted tropism for macrophages and CD163 is a key receptor for infection. In this study, the PRRSV strain NCV1 was passaged on MARC-145 cells for 95 passages, and two plaque-clones (C1 and C2) were randomly selected for further analysis. The C1 virus nearly lost the ability to infect porcine alveolar macrophages (PAMs), as well as porcine kidney cells expressing porcine CD163 (PK15-pCD163), while the C2 virus replicates well in these two cell types. Pretreatment of MARC-145 cells with an anti-CD163 antibody nearly blocked C1 virus infection, indicating that the virus still required CD163 to infect cells. The C1 virus carried four unique amino acid substitutions: three in the nonstructural proteins and a K160I in GP2. The introduction of an I160K substitution in GP2 of the C1 virus restored its infectivity in PAMs and PK15-pCD163 cells, while the introduction of a K160I substitution in GP2 of the low-passaged, virulent PRRSV strain NCV13 significantly impaired its infectivity. Importantly, pigs inoculated with the rNCV13-K160I mutant exhibited lower viremia levels and lung lesions than those infected with the parental rNCV13. These results demonstrated that the K160 residue in GP2 is one of the key determinants of PRRSV tropism.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Linhagem Celular , Substituição de Aminoácidos , Macrófagos , Glicoproteínas
7.
Vaccines (Basel) ; 10(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36146478

RESUMO

Influenza A virus of swine (IAV-S) is an economically important swine pathogen. The IAV-S hemagglutinin (HA) surface protein is the main target for vaccine development. In this study, we evaluated the feasibility of using the recombinant tri-segmented Pichinde virus (rPICV) as a viral vector to deliver HA antigen to protect pigs against IAV-S challenge. Four groups of weaned pigs (T01-T04) were included in the study. T01 was injected with PBS to serve as a non-vaccinated control. T02 was inoculated with rPICV expressing green fluorescence protein (rPICV-GFP). T03 was vaccinated with rPICV expressing the HA antigen of the IAV-S H3N2 strain (rPICV-H3). T04 was vaccinated with the recombinant HA protein antigen of the same H3N2 strain. Pigs were vaccinated twice at day 0 and day 21 and challenged at day 43 by intra-tracheal inoculation with the homologous H3N2 IAV-S strain. After vaccination, all pigs in T03 and T04 groups were seroconverted and exhibited high titers of plasma neutralizing antibodies. After challenge, high levels of IAV-S RNA were detected in the nasal swabs and bronchioalveolar lavage fluid of pigs in T01 and T02 but not in the T03 and T04 groups. Similarly, lung lesions were observed in T01 and T02, but not in the T03 and T04 groups. No significant difference in terms of protection was observed between the T03 and T04 group. Collectively, our results demonstrate that the rPICV-H3 vectored vaccine elicited protective immunity against IAV-S challenge. This study shows that rPICV is a promising viral vector for the development of vaccines against IAV-S.

8.
Vaccines (Basel) ; 10(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746524

RESUMO

A randomized control trial was performed over a five-year period to assess the efficacy and antibody response induced by autogenous and commercial vaccine formulations against infectious bovine keratoconjunctivitis (IBK). Calves were randomly assigned each year to one of three arms: an autogenous vaccine treatment that included Moraxella bovis (M. bovis), Moraxella bovoculi, and Mycoplasma bovoculi antigens, a commercial M. bovis vaccine treatment, or a sham vaccine treatment that consisted only of adjuvant. A total of 1198 calves were enrolled in the study. Calves were administered the respective vaccines approximately 21 days apart, just prior to turnout on summer pastures. Treatment effects were analyzed for IBK incidence, retreatment incidence, 205-day adjusted weaning weights, and antibody response to the type IV pilus protein (pili) of M. bovis as measured by a novel indirect enzyme-linked immunosorbent screening assay (ELISA). Calves vaccinated with the autogenous formulation experienced a decreased cumulative incidence of IBK over the entire study compared to those vaccinated with the commercial and sham formulations (24.5% vs. 30.06% vs. 30.3%, respectively, p = 0.25), and had less IBK cases that required retreatment compared to the commercial and sham formulations (21.4% vs. 27.9% vs. 34.3%, respectively, p = 0.15), but these differences were not significant. The autogenous formulation induced a significantly stronger antibody response than the commercial (p = 0.022) and sham formulations (p = 0.001), but antibody levels were not significantly correlated with IBK protection (p = 0.37).

9.
Viruses ; 14(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215993

RESUMO

To investigate the role of PRRSV nonstructural proteins (nsps) in viral RNA replication and transcription, we generated a cDNA clone of PRRSV strain NCV1 carrying the nanoluciferase (nluc) gene under the control of the transcription regulatory sequence 6 (TRS6) designated as pNCV1-Nluc. Cells transfected with the pNCV1-Nluc DNA plasmid produced an infectious virus and high levels of luciferase activity. Interestingly, cells transfected with mutant pNCV1-Nluc constructs carrying deletions in nsp7 or nsp9 regions also exhibited luciferase activity, although no infectious virus was produced. Further investigation revealed that the cDNA sequences corresponding to the PRRSV 5' untranslated region (UTR) and TRS, when cloned upstream of the reporter gene nluc, were able to drive the expression of the reporter genes in the transfected cells. Luciferase signals from cells transfected with a reporter plasmid carrying PRRSV 5' UTR or TRS sequences upstream of nluc were in the range of 6- to 10-fold higher compared to cells transfected with an empty plasmid carrying nluc only. The results suggest that PRRSV 5' UTR and TRS-B in their cDNA forms possess cryptic eukaryotic promoter activity.


Assuntos
Regiões 5' não Traduzidas/genética , DNA Complementar/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Regiões Promotoras Genéticas , Animais , Linhagem Celular , Genes Reporter , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , RNA Viral/genética , Suínos , Replicação Viral
10.
J Virol ; 95(21): e0105221, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34379512

RESUMO

Porcine alveolar macrophage (PAM) is one of the primary cellular targets for porcine reproductive and respiratory syndrome virus (PRRSV), but less than 2% of PAMs are infected with the virus during the acute stage of infection. To comparatively analyze the host transcriptional response between PRRSV-infected PAMs and bystander PAMs that remained uninfected but were exposed to the inflammatory milieu of an infected lung, pigs were infected with a PRRSV strain expressing green fluorescent protein (PRRSV-GFP), and GFP+ (PRRSV infected) and GFP- (bystander) cells were sorted for RNA sequencing (RNA-seq). Approximately 4.2% of RNA reads from GFP+ and 0.06% reads from GFP- PAMs mapped to the PRRSV genome, indicating that PRRSV-infected PAMs were effectively separated from bystander PAMs. Further analysis revealed that inflammatory cytokines, interferon-stimulated genes, and antiviral genes were highly upregulated in GFP+ compared to GFP- PAMs. Importantly, negative immune regulators, including NF-κB inhibitors (NFKBIA, NFKBID, NFKBIZ, and TNFAIP3) and T-cell exhaustion markers (programmed death ligand-1 [PD-L1], PD-L2, interleukin-10 [IL-10], IDO1, and transforming growth factor ß2 [TGFB2]) were highly upregulated in GFP+ cells compared to GFP- cells. By using an in situ hybridization assay, RNA transcripts of tumor necrosis factor (TNF) and NF-κB inhibitors were detected in PRRSV-infected PAMs cultured ex vivo and lung sections of PRRSV-infected pigs during the acute stage of infection. Collectively, the results suggest that PRRSV infection upregulates expression of negative immune regulators and T-cell exhaustion markers in PAMs to modulate the host immune response. Our findings provide further insight into PRRSV immunopathogenesis. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is widespread in many swine-producing countries, causing substantial economic losses to the swine industry. Porcine alveolar macrophage (PAM) is considered the primary target for PRRSV replication in pigs. However, less than 2% of PAMs from acutely infected pigs are infected with the virus. In the present study, we utilized a PRRSV strain expressing green fluorescent protein to infect pigs and sorted infected and bystander PAMs from the pigs during the acute stage of infection for transcriptome analysis. PRRSV-infected PAMs showed a distinctive gene expression profile and contained many uniquely activated pathways compared to bystander PAMs. Interestingly, upregulated expression of NF-κB signaling inhibitors and T-cell exhaustion molecules were observed in PRRSV-infected PAMs. Our findings provide additional knowledge on the mechanisms that PRRSV employs to modulate the host immune system.


Assuntos
Imunidade/genética , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Síndrome Respiratória e Reprodutiva Suína/fisiopatologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Linfócitos T/imunologia , Animais , Perfilação da Expressão Gênica , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Análise de Sequência de RNA , Transdução de Sinais , Suínos , Transcriptoma , Regulação para Cima
11.
Viruses ; 12(11)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142752

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single-stranded RNA virus that is known to infect only pigs. The virus emerged in the late 1980s and became endemic in most swine producing countries, causing substantial economic losses to the swine industry. The first reverse genetics system for PRRSV was reported in 1998. Since then, several infectious cDNA clones for PRRSV have been constructed. The availability of these infectious cDNA clones has facilitated the genetic modifications of the viral genome at precise locations. Common approaches to manipulate the viral genome include site-directed mutagenesis, deletion of viral genes or gene fragments, insertion of foreign genes, and swapping genes between PRRSV strains or between PRRSV and other members of the Arteriviridae family. In this review, we describe the approaches to construct an infectious cDNA for PRRSV and the ten major applications of these infectious clones to study virus biology and virus-host interaction, and to design a new generation of vaccines with improved levels of safety and efficacy.


Assuntos
Genoma Viral , Interações entre Hospedeiro e Microrganismos/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Genética Reversa , Animais , DNA Complementar , Mutagênese Sítio-Dirigida , Síndrome Respiratória e Reprodutiva Suína/virologia , Suínos/virologia , Replicação Viral
12.
Vaccines (Basel) ; 8(3)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947931

RESUMO

Luciferase-immunoprecipitation system (LIPS), a liquid phase immunoassay, was used to evaluate antibody responses directed against the structural proteins of PRRSV in pigs that were experimentally infected with virulent PRRSV strains. First, the viral N protein was used as a model antigen to validate the assay. The LIPS results were highly comparable to that of the commercial IDEXX PRRS X3 ELISA. Subsequently, the assay was applied to simultaneously measure antibody reactivity against all eight structural proteins of PRRSV. The highest immunoreactivities were detected against GP3, M, and N proteins while the lowest reactivity was detected against ORF5a protein. Comparative analysis of the kinetics of antibody appearance revealed that antibodies specific to N protein appeared earlier than antibodies against GP3. Finally, the assay was applied to measure immunoreactivities of clinical serum samples against N and GP3. The diagnostic sensitivity of the LIPS with N protein was superior to that of the LIPS with GP3. Collectively, the results provide additional information about the host antibody response to PRRSV infection.

13.
Viruses ; 12(8)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731586

RESUMO

Both virulent and live-attenuated porcine reproductive and respiratory syndrome virus (PRRSV) strains can establish persistent infection in lymphoid tissues of pigs. To investigate the mechanisms of PRRSV persistence, we performed a transcriptional analysis of inguinal lymphoid tissue collected from pigs experimentally infected with an attenuated PRRSV strain at 46 days post infection. A total of 6404 differentially expressed genes (DEGs) were detected of which 3960 DEGs were upregulated and 2444 DEGs were downregulated. Specifically, genes involved in innate immune responses and chemokines and receptors associated with T-cell homing to lymphoid tissues were down regulated. As a result, homing of virus-specific T-cells to lymphoid tissues seems to be ineffective, evidenced by the lower frequencies of virus-specific T-cell in lymphoid tissue than in peripheral blood. Genes associated with T-cell exhaustion were upregulated. Likewise, genes involved in the anti-apoptotic pathway were upregulated. Collectively, the data suggested that the live-attenuated PRRSV strain establishes a pro-survival microenvironment in lymphoid tissue by suppressing innate immune responses, T-cell homing, and preventing cell apoptosis.


Assuntos
Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade Inata/genética , Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Tecido Linfoide/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos/virologia , Linfócitos T/imunologia
14.
Vet Microbiol ; 239: 108451, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31767095

RESUMO

The substantial genetic diversity exhibited by influenza A viruses of swine (IAV-S) represents the main challenge for the development of a broadly protective vaccine against this important pathogen. The consensus vaccine immunogen has proven an effective vaccinology approach to overcome the extraordinary genetic diversity of RNA viruses. In this project, we sought to determine if a consensus IAV-S hemagglutinin (HA) immunogen would elicit broadly protective immunity in pigs. To address this question, a consensus HA gene (designated H3-CON.1) was generated from a set of 1,112 H3 sequences of IAV-S recorded in GenBank from 2011 to 2015. The consensus HA gene and a HA gene of a naturally occurring H3N2 IAV-S strain (designated H3-TX98) were expressed using the baculovirus expression system and emulsified in an oil-in-water adjuvant to be used for vaccination. Pigs vaccinated with H3-CON.1 immunogen elicited broader levels of cross-reactive neutralizing antibodies and interferon gamma secreting cells than those vaccinated with H3-TX98 immunogen. After challenge infection with a fully infectious H3N2 IAV-S isolate, the H3-CON.1-vaccinated pigs shed significantly lower levels of virus in their nasal secretions than the H3-TX98-vaccinated pigs. Collectively, our data provide a proof-of-evidence that the consensus immunogen approach may be effectively employed to develop a broadly protective vaccine against IAV-S.


Assuntos
Genes Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae , Doenças dos Suínos , Vacinação/veterinária , Animais , Anticorpos Antivirais/sangue , Sequência Consenso/genética , Sequência Consenso/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Eliminação de Partículas Virais/imunologia
15.
Antiviral Res ; 151: 78-86, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29274845

RESUMO

Zika virus (ZIKV), an emerging arbovirus, has become a major human health concern globally due to its association with congenital abnormalities and neurological diseases. Licensed vaccines or antivirals against ZIKV are currently unavailable. Here, by employing a structure-based approach targeting the ZIKV RNA-dependent RNA polymerase (RdRp), we conducted in silico screening of a library of 100,000 small molecules and tested the top ten lead compounds for their ability to inhibit the virus replication in cell-based in vitro assays. One compound, 3-chloro-N-[({4-[4-(2-thienylcarbonyl)-1-piperazinyl]phenyl}amino)carbonothioyl]-1-benzothiophene-2-carboxamide (TPB), potently inhibited ZIKV replication at sub-micromolar concentrations. Molecular docking analysis suggests that TPB binds to the catalytic active site of the RdRp and therefore likely blocks the viral RNA synthesis by an allosteric effect. The IC50 and the CC50 of TPB in Vero cells were 94 nM and 19.4 µM, respectively, yielding a high selective index of 206. In in vivo studies using immunocompetent mice, TPB reduced ZIKV viremia significantly, indicating TPB as a potential drug candidate for ZIKV infections.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/metabolismo , Sobrevivência Celular , Chlorocebus aethiops , Simulação por Computador , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Células Vero , Carga Viral/efeitos dos fármacos , Zika virus/enzimologia , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
16.
Vaccine ; 36(1): 66-73, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29174314

RESUMO

Modified-live virus (MLV) vaccines are widely used to protect pigs against porcine reproductive and respiratory syndrome virus (PRRSV). However, current MLV vaccines do not confer adequate levels of heterologous protection, presumably due to the substantial genetic diversity of PRRSV isolates circulating in the field. To overcome this genetic variation challenge, we recently generated a synthetic PRRSV strain containing a consensus genomic sequence of PRRSV-2. We demonstrated that our synthetic PRRSV strain confers unprecedented levels of heterologous protection. However, the synthetic PRRSV strain at passage 1 (hereafter designated CON-P1) is highly virulent and therefore, is not suitable to be used as a vaccine in pigs. In the present study, we attenuated CON-P1 by continuously passaging the virus in MARC-145 cells, a non-natural host cell line. Using a young pig model, we demonstrated that the synthetic virus at passages 90 and 122 (designated as CON-P90 and CON-P122, respectively) were fully attenuated, as evidenced by the significantly reduced viral loads in serum and tissues and the absence of lung lesion in the infected pigs. Most importantly, CON-P90 confers similar levels of heterologous protection as its parental strain CON-P1. Taken together, the results indicate that CON-P90 is an excellent candidate for the formulation of next generation of PRRSV MLV vaccines with improved levels of heterologous protection.


Assuntos
Imunidade Heteróloga/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos , Vacinas Atenuadas/administração & dosagem , Carga Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Viremia/imunologia , Viremia/prevenção & controle , Virologia/métodos
17.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931684

RESUMO

Zika virus (ZIKV), a mosquito-transmitted flavivirus responsible for sporadic outbreaks of mild and febrile illness in Africa and Asia, reemerged in the last decade causing serious human diseases, including microcephaly, congenital malformations, and Guillain-Barré syndrome. Although genomic and phylogenetic analyses suggest that genetic evolution may have led to the enhanced virulence of ZIKV, experimental evidence supporting the role of specific genetic changes in virulence is currently lacking. One sequence motif, VNDT, containing an N-linked glycosylation site in the envelope (E) protein, is polymorphic; it is absent in many of the African isolates but present in all isolates from the recent outbreaks. In the present study, we investigated the roles of this sequence motif and glycosylation of the E protein in the pathogenicity of ZIKV. We first constructed a stable full-length cDNA clone of ZIKV in a novel linear vector from which infectious virus was recovered. The recombinant ZIKV generated from the infectious clone, which contains the VNDT motif, is highly pathogenic and causes lethality in a mouse model. In contrast, recombinant viruses from which the VNDT motif is deleted or in which the N-linked glycosylation site is mutated by single-amino-acid substitution are highly attenuated and nonlethal. The mutant viruses replicate poorly in the brains of infected mice when inoculated subcutaneously but replicate well following intracranial inoculation. Our findings provide the first evidence that N-linked glycosylation of the E protein is an important determinant of ZIKV virulence and neuroinvasion.IMPORTANCE The recent emergence of Zika virus (ZIKV) in the Americas has caused major worldwide public health concern. The virus appears to have gained significant pathogenicity, causing serious human diseases, including microcephaly and Guillain-Barré syndrome. The factors responsible for the emergence of pathogenic ZIKV are not understood at this time, although genetic changes have been shown to facilitate virus transmission. All isolates from the recent outbreaks contain an N-linked glycosylation site within the viral envelope (E) protein, whereas many isolates of the African lineage virus lack this site. To elucidate the functional significance of glycosylation in ZIKV pathogenicity, recombinant ZIKVs from infectious clones with or without the glycan on the E protein were generated. ZIKVs lacking the glycan were highly attenuated for the ability to cause mortality in a mouse model and were severely compromised for neuroinvasion. Our studies suggest glycosylation of the E protein is an important factor contributing to ZIKV pathogenicity.


Assuntos
Encéfalo/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Motivos de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Evolução Molecular , Glicosilação , Humanos , Camundongos , Mosquitos Vetores , Mutação , Filogenia , Células Vero , Fatores de Virulência/química , Fatores de Virulência/genética , Zika virus/genética , Zika virus/metabolismo
18.
Vaccine ; 35(34): 4408-4413, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28689650

RESUMO

The minor glycoproteins (GPs) of PRRSV, GP2, GP3, and GP4, form a heterotrimer that is required for viral infectivity, presumably due to its interaction with the key cellular receptor CD163. These 3GPs are encoded by open reading frames (ORFs) 2a, 3 and 4 (herein referred to as ORFs 2-4), respectively. The goal of this study was to investigate the immunogenicity of the PRRSV-2 minor GPs. Through the use of reverse genetics, a chimeric virus (designated SDFL24) was constructed by replacing ORFs 2-4 of the PRRSV-1 strain SD01-08 with the corresponding genes of the PRRSV-2 strain FL12. While the parental PRRSV strain SD01-08 was not neutralized by convalescent antisera raised against FL12, the chimeric virus SDFL24 gained susceptibility to neutralization by FL12-specific antisera, indicating that viral proteins encoded by ORFs 2-4 are targets of antibody neutralization. When inoculated into pigs, the chimeric virus SDFL24 elicited T-cell responses against peptides derived from FL12 minor GPs, whereas the parental virus SD01-08 did not. After challenge infection with FL12, pigs previously infected with SDFL24 developed robust kinetics of FL12-specific neutralizing antibodies as compared to those previously infected with the parental strain SD01-08. Finally, the pigs recovered from SDFL24 infection were better protected from a subsequent challenge infection with FL12 than those previously infected with SD01-08. Collectively, the results indicate that PRRSV-2 ORFs 2-4 are capable of inducing protective immunity.


Assuntos
Glicoproteínas de Membrana/imunologia , Fases de Leitura Aberta , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunização , Glicoproteínas de Membrana/genética , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/virologia , Genética Reversa/métodos , Sus scrofa/imunologia , Suínos , Linfócitos T/imunologia , Proteínas Virais/imunologia
19.
Vaccine ; 35(5): 782-788, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062126

RESUMO

Because porcine reproductive and respiratory syndrome virus (PRRSV) exhibits extensive genetic variation among field isolates, characterizing the extent of cross reactivity of immune responses, and most importantly cell-mediated immunity (CMI), could help in the development of broadly cross-protective vaccines. We infected 12 PRRSV-naïve pigs with PRRSV strain FL12 and determined the number of interferon (IFN)-γ secreting cells (SC) by ELISpot assay using ten type 2 and one type 1 PRRSV isolates as recall antigens. The number of IFN-γ SC was extremely variable among animals, and with exceptions, late to appear. Cross reactivity of IFN-γ SC among type 2 isolates was broad, and we found no evidence of an association between increased genetic distance among isolates and the intensity of the CMI response. Comparable to IFN-γ SC, total antibodies evaluated by indirect immunofluorescence assay (IFA) were cross reactive, however, neutralizing antibody titers could only be detected against the strain used for infection. Finally, we observed a moderate association between homologous IFN-γ SC and neutralizing antibodies.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Imunidade Celular/genética , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Linfócitos T/imunologia , Animais , Reações Cruzadas , Variação Genética , Genótipo , Interferon gama/biossíntese , Interferon gama/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Suínos , Linfócitos T/virologia
20.
Vet Microbiol ; 206: 29-34, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27692670

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viral pathogens currently affecting swine production worldwide. Although PRRS vaccines have been commercially available for over 20 years, the available vaccines are considered inadequately effective for control and eradication of the virus. Major obstacles for the development of a highly effective PRRS vaccine include the highly variable nature of the viral genome, the viral ability to subvert the host immune system, and the incomplete understanding of the immune protection against PRRSV infection. This article summarizes the impediments for the development of a highly protective PRRS vaccine and reviews the vaccinology approaches that have been attempted to overcome one of the most formidable challenges, which is the substantial genetic variation among PRRSV isolates, to broaden the antigenic coverage of PRRS vaccines.


Assuntos
Variação Genética , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/imunologia , Animais , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...